staff

Emanuela Reo

Research assistant in Physical principles of regeneration

  • T: +41 22 379 30 78
  • office 4077a (Sciences III)
  • Monitoring newt communities in urban area using eDNA metabarcoding. PeerJ 2021 ;9():e12357. 10.7717/peerj.12357. 12357. PMC8628619.

    abstract

    Newts are amphibians commonly present in small ponds or garden pools in urban areas. They are protected in many countries and their presence is monitored through visual observation and/or trapping. However, newts are not easy to spot as they are small, elusive and often hidden at the bottom of water bodies. In recent years, environmental DNA (eDNA) has become a popular tool for detecting newts, with a focus on individual species using qPCR assays. Here, we assess the effectiveness of eDNA metabarcoding compared to conventional visual surveys of newt diversity in 45 ponds within urban areas of Geneva canton, Switzerland. We designed newt-specific mitochondrial 16S rRNA primers, which assign the majority of amplicons to newts, and were able to detect four species known to be present in the region, including the invasive subspecies , native to the Italian peninsula, that has been introduced in the Geneva area recently. The obtained eDNA results were congruent overall with conventional surveys, confirming the morphological observations in the majority of cases (67%). In 25% of cases, a species was only detected genetically, while in 8% of cases, the observations were not supported by eDNA metabarcoding. Our study confirms the usefulness of eDNA metabarcoding as a tool for the effective and non-invasive monitoring of newt community and suggests its broader use for the survey of newt diversity in urban area at larger scales.

    view more details on Pubmed

  • Assessing the effect of mercury pollution on cultured benthic foraminifera community using morphological and eDNA metabarcoding approaches. Mar. Pollut. Bull. 2017 Oct;():. S0025-326X(17)30840-8. 10.1016/j.marpolbul.2017.10.022.

    abstract

    Mercury (Hg) is a highly toxic element for living organisms and is known to bioaccumulate and biomagnify. Here, we analyze the response of benthic foraminifera communities cultured in mesocosm and exposed to different concentrations of Hg. Standard morphological analyses and environmental DNA metabarcoding show evidence that Hg pollution has detrimental effects on benthic foraminifera. The molecular analysis provides a more complete view of foraminiferal communities including the soft-walled single-chambered monothalamiids and small-sized hard-shelled rotaliids and textulariids than the morphological one. Among these taxa that are typically overlooked in morphological studies we found potential bioindicators of Hg pollution. The mesocosm approach proves to be an effective method to study benthic foraminiferal responses to various types and concentrations of pollutants over time. This study further supports foraminiferal metabarcoding as a complementary and/or alternative method to standard biomonitoring program based on the morphological identification of species communities.

    view more details on Pubmed

Nothing to show yet