staff

Joost Maarten Woltering

  • A role for HOX13 proteins in the regulatory switch between TADs at the HoxD locus. Genes Dev. 2016 May;30(10):1172-86. gad.281055.116. 10.1101/gad.281055.116. PMC4888838.

    Beccari L, Yakushiji-Kaminatsui N, Woltering JM, Necsulea A, Lonfat N, Rodríguez-Carballo E, Mascrez B, Yamamoto S, Kuroiwa A, Duboule D

    abstract

    During vertebrate limb development, Hoxd genes are regulated following a bimodal strategy involving two topologically associating domains (TADs) located on either side of the gene cluster. These regulatory landscapes alternatively control different subsets of Hoxd targets, first into the arm and subsequently into the digits. We studied the transition between these two global regulations, a switch that correlates with the positioning of the wrist, which articulates these two main limb segments. We show that the HOX13 proteins themselves help switch off the telomeric TAD, likely through a global repressive mechanism. At the same time, they directly interact with distal enhancers to sustain the activity of the centromeric TAD, thus explaining both the sequential and exclusive operating processes of these two regulatory domains. We propose a model in which the activation of Hox13 gene expression in distal limb cells both interrupts the proximal Hox gene regulation and re-enforces the distal regulation. In the absence of HOX13 proteins, a proximal limb structure grows without any sign of wrist articulation, likely related to an ancestral fish-like condition.

    view more details on Pubmed

  • Tetrapod axial evolution and developmental constraints; Empirical underpinning by a mouse model. Mech. Dev. 2015 Nov;138 Pt 2():64-72. S0925-4773(15)30007-1. 10.1016/j.mod.2015.07.006. PMC4678112.

    Woltering JM, Duboule D

    abstract

    The tetrapod vertebral column has become increasingly complex during evolution as an adaptation to a terrestrial life. At the same time, the evolution of the vertebral formula became subject to developmental constraints acting on the size of the cervical and thoraco-lumbar regions. In the course of our studies concerning the evolution of Hox gene regulation, we produced a transgenic mouse model expressing fish Hox genes, which displayed a reduced number of thoraco-lumbar vertebrae and concurrent sacral homeotic transformations. Here, we analyze this mutant stock and conclude that the ancestral, pre-tetrapodial Hox code already possessed the capacity to induce vertebrae with sacral characteristics. This suggests that alterations in the interpretation of the Hox code may have participated to the evolution of this region in tetrapods, along with potential modifications of the HOX proteins themselves. With its reduced vertebral number, this mouse stock violates a previously described developmental constraint, which applies to the thoraco-lumbar region. The resulting offset between motor neuron morphology, vertebral patterning and the relative positioning of hind limbs illustrates that the precise orchestration of the Hox-clock in parallel with other ontogenetic pathways places constraints on the evolvability of the body plan.

    view more details on Pubmed

  • Conservation and divergence of regulatory strategies at Hox Loci and the origin of tetrapod digits. PLoS Biol. 2014 Jan;12(1):e1001773. 10.1371/journal.pbio.1001773. PBIOLOGY-D-13-02584. PMC3897358.

    Woltering JM, Noordermeer D, Leleu M, Duboule D

    abstract

    The evolution of tetrapod limbs from fish fins enabled the conquest of land by vertebrates and thus represents a key step in evolution. Despite the use of comparative gene expression analyses, critical aspects of this transformation remain controversial, in particular the origin of digits. Hoxa and Hoxd genes are essential for the specification of the different limb segments and their functional abrogation leads to large truncations of the appendages. Here we show that the selective transcription of mouse Hoxa genes in proximal and distal limbs is related to a bimodal higher order chromatin structure, similar to that reported for Hoxd genes, thus revealing a generic regulatory strategy implemented by both gene clusters during limb development. We found the same bimodal chromatin architecture in fish embryos, indicating that the regulatory mechanism used to pattern tetrapod limbs may predate the divergence between fish and tetrapods. However, when assessed in mice, both fish regulatory landscapes triggered transcription in proximal rather than distal limb territories, supporting an evolutionary scenario whereby digits arose as tetrapod novelties through genetic retrofitting of preexisting regulatory landscapes. We discuss the possibility to consider regulatory circuitries, rather than expression patterns, as essential parameters to define evolutionary synapomorphies.

    view more details on Pubmed

  • The origin of digits: expression patterns versus regulatory mechanisms. Dev. Cell 2010 Apr;18(4):526-32. S1534-5807(10)00153-X. 10.1016/j.devcel.2010.04.002.

    Woltering JM, Duboule D

    abstract

    In the emerging discipline of Evo-Devo, the analysis of gene expression patterns can be deceptive without a clear understanding of the underlying regulatory strategies. Here, we use the paradigm of hand and foot evolution to argue that the consideration of the regulatory mechanisms controlling developmental gene expression is essential to resolve comparative conundrums. In this context, we discuss the adaptive relevance of evolving stepwise, distinct developmental regulatory mechanisms to build an arm, i.e., a composite structure with functional coherence.

    view more details on Pubmed

  • Conserved elements within open reading frames of mammalian Hox genes. J. Biol. 2009 ;8(2):17. jbiol116. 10.1186/jbiol116. PMC2687771.

    Woltering JM, Duboule D

    abstract

    A recent study in BMC Evolutionary Biology shows that many of the open reading frames in mammalian Hox genes are more conserved than expected on the basis of their protein sequence. The presence of highly conserved DNA elements is thus not confined to the noncoding DNA in neighboring regions but clearly overlaps with coding sequences. These findings support an emerging view that gene regulatory and coding sequences are likely to be more intermingled than once believed.

    view more details on Pubmed

Nothing to show yet