staff

Matthias Christian Vogg

Postdoctoral fellow in Regeneration

  • T: +41 22 379 67 59
  • office 4049B (Sciences III)
  • Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in . Cold Spring Harb Perspect Biol 2021 Jul;():. cshperspect.a040725. 10.1101/cshperspect.a040725.

    abstract

    Here we discuss the developmental and homeostatic conditions necessary for regeneration. is characterized by populations of adult stem cells paused in the G2 phase of the cell cycle, ready to respond to injury signals. The body column can be compared to a blastema-like structure, populated with multifunctional epithelial stem cells that show low sensitivity to proapoptotic signals, and high inducibility of autophagy that promotes resistance to stress and starvation. Intact polyps also exhibit a dynamic patterning along the oral-aboral axis under the control of homeostatic organizers whose activity results from regulatory loops between activators and inhibitors. As in bilaterians, injury triggers the immediate production of reactive oxygen species (ROS) signals that promote wound healing and contribute to the reactivation of developmental programs via cell death and the de novo formation of new organizing centers from somatic tissues. In aging , regeneration is rapidly lost as homeostatic conditions are no longer pro-regenerative.

    view more details on Pubmed

  • Model systems for regeneration: Hydra. Development 2019 Nov;146(21):. 146/21/dev177212. 10.1242/dev.177212.

    abstract

    The freshwater polyp provides a potent model system for investigating the conditions that promote wound healing, reactivation of a developmental process and, ultimately, regeneration of an amputated body part. polyps can also be dissociated to the single cell level and can regenerate a complete body axis from aggregates, behaving as natural organoids. In recent years, the ability to exploit has been expanded with the advent of new live-imaging approaches, genetic manipulations that include stable transgenesis, gene silencing and genome editing, and the accumulation of high-throughput omics data. In this Primer, we provide an overview of as a model system for studying regeneration, highlighting recent results that question the classical self-enhancement and long-range inhibition model supposed to drive regeneration. We underscore the need for integrative explanations incorporating biochemical as well as mechanical signalling.

    view more details on Pubmed

  • An evolutionarily-conserved Wnt3/β-catenin/Sp5 feedback loop restricts head organizer activity in Hydra. Nat Commun 2019 01;10(1):312. 10.1038/s41467-018-08242-2. 10.1038/s41467-018-08242-2. PMC6338789.

    abstract

    Polyps of the cnidarian Hydra maintain their adult anatomy through two developmental organizers, the head organizer located apically and the foot organizer basally. The head organizer is made of two antagonistic cross-reacting components, an activator, driving apical differentiation and an inhibitor, preventing ectopic head formation. Here we characterize the head inhibitor by comparing planarian genes down-regulated when β-catenin is silenced to Hydra genes displaying a graded apical-to-basal expression and an up-regulation during head regeneration. We identify Sp5 as a transcription factor that fulfills the head inhibitor properties: leading to a robust multiheaded phenotype when knocked-down in Hydra, acting as a transcriptional repressor of Wnt3 and positively regulated by Wnt/β-catenin signaling. Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also activates its own expression, likely via β-catenin/TCF interaction. This work identifies Sp5 as a potent feedback loop inhibitor of Wnt/β-catenin signaling, a function conserved across eumetazoan evolution.

    view more details on Pubmed

  • How Somatic Adult Tissues Develop Organizer Activity. Curr. Top. Dev. Biol. 2016 ;116():391-414. S0070-2153(15)00121-0. 10.1016/bs.ctdb.2015.11.002.

    abstract

    The growth and patterning of anatomical structures from specific cellular fields in developing organisms relies on organizing centers that instruct surrounding cells to modify their behavior, namely migration, proliferation, and differentiation. We discuss here how organizers can form in adult organisms, a process of utmost interest for regenerative medicine. Animals like Hydra and planarians, which maintain their shape and fitness thanks to a highly dynamic homeostasis, offer a useful paradigm to study adult organizers in steady-state conditions. Beside the homeostatic context, these model systems also offer the possibility to study how organizers form de novo from somatic adult tissues. Both extracellular matrix remodeling and caspase activation play a key role in this transition, acting as promoters of organizer formation in the vicinity of the wound. Their respective roles and the crosstalk between them just start to be deciphered.

    view more details on Pubmed

Nothing to show yet