PHYSICS OF TISSUES AS ACTIVE FLUIDS

G. SALBREUX

1. INTRODUCTION

We will discuss here the physical behaviour of tissues on large scales much larger than
a cell size. Morphogenetic motion during embryonic development relies on the collective
motion of thousands of cells that deform to establish the shape of the organism. At the
scale of an organ, we expect emergent features to appear that are independent of many
details of the cellular organisation. The question here is how the principle of “more is
different” (P.W. Anderson, Science, 1977) is realised in biology going from a single cell to
an entire tissue.

1.1. Tissue organisation.
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We briefly summarize key aspects of the organization of cells in epithelia. Epithelial cells
have an apico-basal polarity with different sets of proteins and cellular structures present
in the apical and basal regions. The basal cellular interfaces adhere to an external polymer
network, the extracellular matrix, through specific structures such as focal adhesions. Cells
adhere to each other through adhesion molecules, such as cadherins, which go across the
cell membrane. On the intracellular side, cadherins are bound, indirectly, to an actomyosin
network. The actomyosin cytoskeleton is a cellular structure made of actin filaments and
myosin molecular motors which are strongly concentrated near the cell membrane. Within
this actin polymer network, myosin molecular motors exert internal tensions, which allow
cells and tissues to deform.

In the following we will discuss a two-dimensional description of flat epithelia. The
idea is that three-dimensional aspects of tissue mechanics are effectively captured by two-
dimensional parameters. We use the cartesian basis e;, e, and denote by latin indices

i,7,... the space coordinates x,y.
1
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1.2. Rheology. To discuss the mechanical response of a tissue, we introduce some no-
tions of rheology. Rheology describes how materials can flow. A Newtonian fluid has a
particularly simple rheology and obeys the constitutive equation

(1) Gij = 2n0ij
where 7;; is the traceless part of the symmetrized stress tensor, n the viscosity and v;; is
the anisotropic part of the gradient of flow (see section 3.1 for a precise definition). In this
simple case, a gradient of flow is creating a stress, which vanishes when the flow stops, and
one postulates a linear relation between a thermodynamic flux (the gradient of flow) and
a thermodynamic force (the stress tensor).

To discuss more complex rheology, we consider here simple 1D systems. In the one-

dimensional case, a viscous element with a Newtonian fluid law would have the constitutive
equation

dx
(2) f=ng
with p the viscosity of the viscous element, x the deformation, and f the force acting on
the element. Such an element is called a dashpot. A spring element, by contrast, is an
elastic element and has constitutive equation

(3) f = ke

with k£ a spring modulus. By contrast to a viscous element, an elastic element can sustain
a stress at constant deformation .

“Rheological schemes” describe more complex behaviour occurring on different timescales,
and are obtained by combining different basic rheological elements. Two examples are
shown below for the Maxwell (left) and Kelvin-Voigt (right) rheology which are two sim-
plified descriptions of a viscoelastic material.
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A material with a Maxwell rheology is fluid on long time scales, while a material with
a Kelvin-Voigt rheology is elastic on long time scales. The Maxwell element is made of
a dashpot (with viscosity u) and a spring (with elastic modulus k) in series, while the
Kelvin-Voigt element is made of a dashport and a spring in parallel. Considering the total
deformation and total force in each of these systems, one can see that the force f and
deformation u are related to each other by

d d
(4) <1 + Tdt) f= Mdi: Maxwell ,

(5) % =k (1 + Tjt) %L Kelvin — Voigt ,
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where 7 = % is a characteristic time scale that can be constructed from the ratio of the

dashpot viscosity and the spring elastic modulus. In each case the long time behaviour
can be found by setting the limit % — 0; one can see then that on long time scale the
Maxwell element has constitutive equation f = udu/dt (a purely viscous behaviour); while

the Kelvin-Voigt element has constitutive equation f ~ ku (a purely elastic behaviour).

2. BROKEN SYMMETRIES: TISSUES AS LIVING LIQUID CRYSTALS

Cells are not isotropic objects: they can have a preferred axis of elongation, or establish
an anisotropic cellular organization. On large scales, tissues can therefore be seen as
collections of individual anisotropic objects. This feature is reminiscent of liquid crystals
which are made of (much simpler) anisotropic molecules. We therefore expect some aspects
of the physics of liquid crystals to appear in tissues.

2.1. Cell polarity.

2.1.1. Cell polarization. Cells can spontaneously polarize themselves by segregating pro-
teins at opposite ends of the cell. This is thought to be achieved by proteins which bind to
the cell membrane, or to the cell actomyosin cortex at the cell membrane, but also repress
each other (i.e., negatively affect the binding affinity of other proteins). This can ensure
that two different types of proteins tend to accumulate in different regions of the cell. For
instance, epithelial tissues have a main apico-basal axis that distinguishes the “top” and
“bottom” of the nearly two-dimensional epithelial surface. In addition, planar-cell polarity
proteins establish a preferred cell direction in the plane of the tissue, orthogonal to the
apico-basal axis. To capture the main axis of organization of polarity proteins, a polarity
vector p can be associated to a cell, based on the first moment in the distribution of polar-
ity proteins. For instance, we denote here A(f) and B(#) the normalized concentrations of
two polarity proteins A and B along the contour of a 2D section of a cell. A point on the
contour is labelled by the angle 0 measured to the center of the cell. The concentrations
are normalized such that f027r dOA(f) = 1, and similarly for B. One can define a polarity
vector through

([ JFdO(A0) — B(6)) cosd
v " < 7 0(A(0) — B(0)) sin

One can verify that with this definition, if A and B are both uniformly distributed, then

p = 0. If A and B are not uniform, the vector p points towards A-rich regions, away from
B rich regions.

2.1.2. A simple model for C. elegans embryo polarization.
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A model system studied to understand cell polarization is the early anterio-posterior
polarization of the C. elegans embryo. During this biological process, a symmetry-breaking
event occurs, establishing the first antero-posterior axis of the animal. A set of polarity
proteins segregate at the anterior and posterior cell ends. A model proposed to understand
the establishment of polarization reads

(7) A = DOZA + kon — [kofr + kP?] A
(8) P = DOLP + kon — [kor + kA*] P

where A and P are the surface concentrations of an anterior and posterior marking pro-
tein. The diffusion constant of polarity protein at the cell surface D and their on-rate
kon are taken to be identical for A and P for simplicity. The on-rate ko, also absorbs the
cytoplasmic concentration which is assumed to be constant. The off rate of each protein
is modulated by the concentration of the other protein, reflecting interactions between the
two proteins. The terms in k£ have exponents in A and P which reflect molecular mecha-
nisms contributing to the unbinding event; here one has assumed that a complex formed
of two molecules of one type is necessary to promote the unbinding of the other type.

To study this system of equations, it is easier to reduce the number of parameter by
normalizing time (f = tkog) and concentrations (A = A/(kon/kot) » P = P/(kon/kog)),
which leads to:

HA=00A+1—[1+kP?] A
(9) P =P +1—[1+kA*| P,

where £ = \/D/kog is a characteristic length of diffusion and k = kk2, /k3; is an adimen-

sional coefficient.
It is then instructive to look for homogeneous solutions (924 = 0 and 92P = 0) and
plot the nullclines (the lines in the space (A, P) for which ;A = 0 and &;P = 0). The
1(1 1

nullclines equations are P = /1 (T — 1) and P = Ty

k\A

and are plotted below for two

different values of k.
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The nullclines intersect at possible homogeneous solutions for A and P. The arrows indicate
schematically the direction of the vector (9;A, 9,P), allowing to visually guess the stable
and unstable solutions. For k < 4 one stable homogeneous solution exists, for k > 4 two
stable solutions and one unstable solution appear.

The appearance of bistability allows the system to support regions with a high (respec-
tively low) concentration of A and low (respectively high) concentration of P. The plots
below show steady-state solutions of Eq. 9 on a domain 0 < x < L with no flux boundary
conditions, 0, A|z—0 = 0y Ay—f, = 02 P|z—0 = 0, P|s—r = 0. Depending on the initial con-
dition, the system can reach a A or P high state, or a coexistence state where an interface
appears between A-rich and P-rich domains. In this last polarized cell state, the width of
the interface is related to the diffusion-associated length /.

2.1.3. Planar polarity patterns. In an epithelium, cells can spontaneously polarize in the
plane, choosing an orientation which is consistent between neighbouring cells. This is
achieved by interactions between polarity proteins across cellular interfaces.

On scales much larger than the cells, the tendency of cell neighbours planar-cell polarity
to align with each other give rise to large-scale polarity patterns. In analogy with a pas-
sive liquid-crystal, one expects an effective energetic cost to be associated with non-zero
gradients of polarity, which can be written

F:/dSK(aip)2+/dS)\(p2—1),
s 2 s

where K is called the Frank constant and the first term in F' is the Frank free energy. The
constant K penalizes distorsions in the polarity field p. The second term in F' involves a
Lagrange multiplier A which enforces that p = 1. One can then define h the molecular
field:

(10)

h:—(s—F:KAp—Q)\p
op
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where A is the Laplacian operator. h can be seen as the driving force arising from the
system effective free energy, which tends to make the polarity field rotate. At equilibrium,
the effective free energy is minimized and h = 0.

A striking example of such polar patterns can be seen in the Drosophila pupal wing.
During pupal wing development, the tissue elongates along the proximal-distal direction
(horizontal axis in the schematic below). At the same time, the planar polarity reorients
to align with the elongation axis of the wing:

-8
~ P
» 4

We now discuss this process using a continuum theory of polar fluids. We write a linear
phenomenological equation for the evolution of the polarity field, which is inspired by the
physics of liquid crystals:

D Di 1

(11) Dt = ihz — I/pjf}ij y
where the corotational time derivative reads

Dpi  Opi
(12) Dr = o T vi%ipi + wips

with w;; = %(@vj — 0;v;) is associated to the rotational curl of the velocity field. The first
term in Eq. 12 is the actual time variation of the polarity, the second term correspond to
advection of polarity by the flow, the third term to rotation of the polarity by the flow.
In Eq. 11, the first term describes the relaxation due to the molecular field, and ~; is a
rotational viscosity. The second term is a flow-alignment term that arises from the fact
that the polarity can reorient under a shear flow, with v a phenomenological coefficient.
The traceless symmetric part of the flow gradient, 9;;, is defined in section 3.1. We consider
here a case where v < 0. In the absence of flow, Eq. 11 describes a dynamic relaxation to
the equilibrium state, characterized by h = 0.

For simplicity we assume that the order parameter is homogeneous in space. In that case
the free energy of the system (Eq. 10) reduces to Fy = [4 dSA(p? — 1), and the molecular
field is then given by h = —2Ap. The Lagrange multiplier can be determined by imposing

Di %pti = 0, a consequence of p = 1. One then obtains from Eq. 11:

1 -
piwijp; = —Ipﬂ)\pz‘ — VP;jPivij,
1 N = g -
(13) =~ pipj(wig +voy) .

The uniform polar field in 2D is now written p = (cosf,sinf). The deformation of the
tissue is represented by an elongational flow v, = k.x, where k. is the rate of tissue
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elongation. We then obtain a dynamic equation for the angle 6 in this flow:

dpe ke 2 2 ke
- px”? (Pa: _py) - Vpx?
—siDGZ—i = —cos@%ke(l — cos? 0 + sin?6)
do vk, .
(14) % - 3 sin(26)

One can see from this equation that the possible stationary solutions for the polarity
orientation under the flow are § = k7w /2 with k an integer. In the interval 0 < 6 < 27, only
the solution # = 0 and § = 7 are actually stable. The stability of the solution § = 0 can
been seen by expanding the dynamic equation 14, for small § << 1:

do
E =~ I/k‘ee

and the angle 6 has solution
0 = foe”*!

which relaxes exponentially to § = 0 for v < 0, with a time scale 7 = 1/(—vk.). This also
means that if the system starts with an angle 6y # 0 sufficiently small, the polarity will
reorient towards the elongation axis (§ = 0) as the tissue elongates.

Returning to the biological system, this analysis shows that the elongation of a tissue
during morphogenesis can in principle drive an alignment of the cells planar polarity axis,
along the axis of tissue elongation.

2.2. Cell elongation. We now turn to cell elongation. When looking at the apical surface
of an epithelium, it is clear that cell shapes are not isotropic, i.e. are not generally circular.
We then seek to characterize cell shape by a simple quantification. One could in principle
associate a polarity field to the shape by defining a vector pg:

1 2 40r(6) cos 0
15 = 0
(15) PS = 9rR < 27 d6r(6)sing |

where 7(0) denotes the position of the contour of the cell at angle #, in polar coordinates
away from the cell center, and we also have introduced R = % 0% dfr(0) the average ra-
dius. It turns out however that in a typical epithelium the cell shape is better characterized
by the next order nematic order parameter:

ce ce 2 o .
(16) Q= < o Q > _ L o dor(0)cos20  [o” dor(0)sin26
w s 2rR \ [ dOr()sin20 — [ dfr() cos 20

Ty vy

which quantifies cell elongation. The tensor Q! is symmetric and traceless, therefore it
has only two independent components. Rewriting the nematic tensor Q! as

2_ 1
(17) Q! = 25( fe 2 T ) :

1
NgNy Ny — 3
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defines the strength of cell elongation, S = \/ (Qseh)? + (Qsel)?, and a normalized nematic

vector n which verifies n? = 1 and gives the axis of cell elongation. Both n and —n
correspond to the same tensor Q, as required by the fact that the nematic order parameter
does not vary by rotation of 7 of the elements of the system.

Once a cell elongation axis n has been associated to cells in the tissue, a large-scale
average cell elongation tensor can be defined from:

(18) Qij = (Q5")

where the averaging operator has a possible definition for a quantity f, which varies be-
tween cells labelled «,

Zcell a Aafa )
Zcell « AOé

This definition has the advantage of giving a smaller weight in the averaging to cells that
occupy a smaller area of the tissue.

(19) (f) =

2.3. Nematostatics. When culturing in vitro elongated cells, it is found for some cell
types that large-scale nematic structures emerge where neighboring cells tend to align
their axis of cell elongation. This is reminiscent of the planar polarity patterns discussed
in section 2.1.3. As in the case of planar polarity, one expects that the tendency of the
system to eliminate spatial distorsion of the nematic axis can be captured by minimization
of the effective Frank free energy:

(20) F= /dS';{(ain)Q .

Below we consider a situation where n = 1 and one denotes the angle ¢ such that n =
(cos ¢, sin ). The angles ¢ and ¢ + 7 refer to the same nematic state. In that case the
distorsion effective free energy can be rewritten F' = [ dS %(8@)2 ; minimizing the energy
with respect to ¢ yields the equation

(21) Ap=0

with A = 92 + 85 the Laplacian operator.

Cellular elongation patterns, as orientation patterns seen in nematic liquid crystals, can
exhibit point defects. A defect is a point where the nematic angle is not defined. Defects
can be classified according to their topological charges. The ”topological charge” enclosed
within a curve C is defined by

(22) m—— 7{ dl;0;0
C

o7

where the integral is taken on the curve C, and has positive orientation (see below for an
example of such a curve). dl is an infinitesimal displacement along the curve.
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The topological charge quantifies how much the vector field rotates along the curve: one
full rotation in the clockwise direction contributes a charge 1, one full rotation in the
anticlockwise direction a charge -1. Importantly, the topological charge around a defect
does not depend on the precise shape of the enclosing curve C.

To find the nematic profile around a defect, one can note that in polar coordinates the
Laplacian operator reads A = 92 + %010 + %283. Looking for a solution of Eq. 21 that does
not depend on 7, one is led to

(23) o(r,0) =mb +a

where m is the nematic charge of the defect as can be seen by application of Eq. 22. For a
nematic defect, m must be a multiple of 1/2 to ensure proper periodicity as 6 goes from 0 to
27 (for a nematic ¢ and ¢ + 7 are equivalent). Changing the constant a leads to an overall
solid rotation of the pattern of the defect. The associated distorsion energy of a defect of
charge m is, by application of Eq. 20, F,, = tKm?log r%’ where R and r. are an upper
and lower cut-off lengths around the defect (in the core of the defect the assumption n = 1
must break down). From this relation, one sees that defects with a smaller topological
charge have a lower effective energy and are more favourable.

Below are shown the corresponding solutions for the lowest-charge defects m = % and
m = —%:
1l 1
2 2
if = .
W = TN
=
0 0 ‘
N W
NS =
SN WiZz=
-1 0 1 K] ) 3

One can note that the two :i:% defects have themselves different symmetries: the +% defect
has a preferred direction (left to right above), while the —% defect has a 3-fold rotational
symmetry. As a result, in an active system, the —I—% system can acquire a spontaneously
velocity, but the —% defect can not.

We now discuss experimental results observing patterns of an elongated cell type cultured
in vitro (NIH 3T3 mouse embryo fibroblasts). The tissue is grown on a circular disc. Cells
tend to orient their axis of elongation parallel to the external interface, a very general
observation in tissues in wvivo and in wvitro. On a disc this enforces a total topological
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charge of 1; therefore defects must arise within the tissue. The number of visible nematic
defects decrease over time as the tissue dynamically rearranges and defects of opposite
charge annihilate. Eventually the system converges to an organization with only two —i—%
defects which form at a reliable position within the disc. This is consistent with effective
energy arguments described above - the system prefers to choose defect with low charges.
One can in fact go further and show that the final position of defects is also predicted by
minimizing the effective distorsion energy introduced above. This is a beautiful example of
the fact that on large scale, it can happen that many of the details of cellular organization
do not matter, and the tissue-scale behaviour can be predicted by simple generic physical
arguments.

3. SHEAR DECOMPOSITION

We now discuss tissue shear, i.e. the dynamics of tissue deformation. The fundamental
question in this section is how to relate cell and tissue deformation.

3.1. Isotropic and anisotropic shear.

= \/ + \/ + v

We denote v the velocity field in the tissue. Deformations can be quantified by consid-
ering spatial gradient of the velocity field. The velocity gradient tensor v;; = d;v; can be
decomposed into three basic components

1
(24) Uij = =

’Ukkdij + f)ij + we;o,
2 = ~— ~—

isotropic  anisotropic, area-preserving  rotation

where vg, = vz + vyy is the trace of the velocity gradient, and describes isotropic con-
traction or expansion, corresponding to changes of tissue area. We refer to it as the
“isotropic shear”. The second term in the decomposition, ¥;; = %(vij + vji) — ”%517
is the traceless symmetric part of the velocity gradient and describes pure shear (i.e.
anisotropic deformation which preserves the area). This is the “anisotropic shear”. The
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antisymmetric part of the velocity gradient describes local rotations and can also be writ-
ten w;; = we;; = %(&-vj — 0jv;). Here, €;; is defined as the antisymmetric tensor with
€ox = €yy = 0, €2y = Ll and €, = —1. w = %vijeij is the rotational curl of the velocity field.
This decomposition is a mathematical identity and is therefore exact. Local solid rotations
described by w;; do not correspond to local material deformations, so in the following we
focus on the isotropic and anisotropic shear.

Below we discuss cellular contributions to the isotropic and anisotropic shear.

3.2. Isotropic shear decomposition. The isotropic shear decomposition essentially arises
from the balance of number of cells. This equation can be written

(25) On + Oi(nv;) = n(ky — kq)

where n is the cell number density (number of cells per unit area), nv is the cell flux,
quantifying the transport of cells by the flow, k4 is the rate of cell division, and k, the rate
of cell apoptosis (or delamination from an epithelium). This balance equation follows the
generic form, for a quantity f,

(26) Ouf +0if = o

where j/ is a flux, describing spatial redistribution of the quantity f and s/ is a source
term, describing destruction and creation of f. Accordingly in Eq. 25, in the absence of
cell division and death, the cell number density n is a conserved quantity (i.e., in a closed
system with no flow at the boundary, 9;([ dSn) = 0) and only locally changes according
to the flux j = nv. The term in the right-hand-side of Eq. 25, n(kq — k) is a source term
that describes creation and destruction of cells.

Eq. 25 can be written in a slightly different form, which makes the isotropic shear
decomposition more transparent:

1 Da
(27) Vgl = OpUf = o Dt + kg — kg
where a = 1/n is the average cell area, and Da/Dt = 0ia + v;0;a is the convected time
derivative of the average cell area. Under this form, we see that the tissue flow divergence
(or relative rate of area change) arises either from a change in the average cell area, or

through creation or destruction of cells through cell division or apoptosis.

3.3. Anisotropic shear decomposition. Anisotropic shear can also be decomposed into
fundamental contributions. Intuitively, we expect that tissue shear can stem from cellular
deformation, simply because if every cell elongates in a tissue, the tissue elongates as well.
Cell elongation can be quantified by a nematic tensor @);;, as described in section 2.2. The
relationship between tissue shear and cell elongation change can then be written

DQ;

2 bij =
(8) Uij Dt

with D/Dt the corotational derivative:
DQi;

(29) Dt

= 0;Qij + 0k Qij + Wik Qrj + Wik Qi -
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In Eq. 28, the anisotropic shear ¥;; is a deformation per unit time, and the right hand side
is the time derivative of a measure of cell elongation, so that the relation is dimensionally
consistent.

However, Eq. 28 does not capture all possible sources of deformation in a tissue. This
is because cells can not only elongate, but also undergo events of cell division, cell delami-
nation (when a cell disappears from the tissue), and cell neighbour exchange. A schematic
for these three different events is shown below.

Neighbor exchange:

L2
®
@

Cell division:

Cell delamination:

@ﬁ

All these events can contribute to tissue deformation, without change in cell shape; or
alternatively can lead to cell deformation without the boundary of the tissue moving. As
a result a more general shear decomposition can be written as

DQi;
Dt

where R;; is a tensor of cellular rearrangements.

We now describe a method to calculate these contributions to tissue anisotropic deforma-
tion, from observations of a deforming 2D tissue. We assume that we have measurements
of the cells positions and topology at times t, = 0, At,...nAt,.... The idea is to decompose
the tissue deformation occurring between t,, and t,11 into several steps. So denoting O,
the state of the tissue at time ¢,, one constructs the intermediate artificial states I}, I2,
Ig between O,, and O,1, as follows:

(30) 171‘]' = + Rl‘j

delamination Il pure deformation I2 neighbour exchange 13 divisions
n

(31) On, n n On+1 .

Here I3 is constructed from O,1 by “undoing” cell divisions. I! is constructed from O,
by removing all cells that will undergo a delamination between ¢,, and t,,11 (but keeping
otherwise the tissue state as in O,,). I? is obtained by displacing the cell centers in I}
to have the position they reach in I3. What is left between I2 and I3 are then cellular
neighbour exchange events, but which occur at fixed cell center positions.
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From this set of decomposition, the change in average tissue cell elongation between O,
and O+ can then be written

(Qij(On41)) = (Qij(On)) = [{Qi; (1)) = (Qij(On))] + [(Qi (1)) — (Qij(1,))]

cell elongation delaminations cell center motion
(32) + [(Qi (1)) — (Qi(I))] + [{Qij(On+1)) — (Qi(1))]
neighbour exchange divisions

If we divide each side of this relation by At, we see that we are close to a relation of
the form of Equation 30, rewritten as Dg” = 0;; — R;j. Indeed, the left-hand side is a
change of cell elongation, and the right hand side contains changes due to various cellular
rearrangements. The contribution due to “cell center motion” is close to what expect will
correspond to the anisotropic tissue shear v;;.

To make this contribution more clear, we use a specific way to calculate cell elongation
which is convenient for the decomposition above. We define a dual network of triangles
which is obtained by connecting the cell centers of nearest neighbours. Instead of calcu-
lating elongation cell by cell, the tissue elongation is then calculated by taking the average
triangle elongation in the dual network. With this definition, a cellular rearrangement is
associated to a swap in how a quadrilateral can be divided into two triangles, as in the
example below:

S ING O

Oy =1, L, Iy = Ony1

n

This swap event is at the origin of the shear by cellular rearrangement in the shear decom-
position method.
To relate the change in triangle elongation coming from “cell center motion” to the shear,

one starts with the observation that the shear associated to a triangle with vertices x!, x2,

x3 and associated velocities v!, v2, v3 can be uniquely defined by the set of equations

p— :Uﬂ(x_x

v
(33) v — v

ST

In the equations above, there are 4 equations (since i = x,y) and 4 unknowns, the compo-
nents of v;;.

On the other hand, the elongation of a triangle can be defined uniquely by comparing
the triangle with an equilateral triangle, with an horizontal base and an arbitrary side
length. This comparison defines an affine transformation s;;, which can be obtained from
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the set of equations

i —x; = si5(e5 — )
(34) x} — ;= sij(e] —ej)

where e® are the vertices of the reference triangle. The triangle elongation can then be
defined by decomposing uniquely s into a rotation r, a pure shear transformation e®
parameterized by a traceless symmetric elongation tensor Q, and an area change:

a
— = Q.
(35) s aoe r,

where ag is the area of the reference triangle. Mathematically this relation arises from a
matrix polar decomposition of s.

This now defines the elongation tensor for a triangle Q, which can be plugged in Eq. 32.
As shown in the schematic below, one then wishes to relate the change of triangle shape,
quantified by s, to the shear, quantified by v;;.

Reference triangle A
s(t) i i s(t + dt)
Real triangle
/N >

Vij
Combining Egs. 33 and 34 above, one can verify that
dsij
dt

Then combining Eq. 35 and 36, one can verify ! that for a single triangle, and for small
triangle elongation |Q| < 1,

(36) = VkiSkj -

. dQyj
(39) Uij ~ (C;tj + 2wikaj .

One can see in this relation that the triangle shear is not purely its change of elongation,
but also involves a corotational term. Using this expression to replace (Q;;(I2)) — (Qi;(I}))

IThis can be proven as follows for small elongation |Q| < 1. One has e? ~ 1+ Q and s;; ~ , [ ae(rij +

?ik"'kj)~ U?igg tggt r isha rotation and denoting 6 its angle, d:l’zj = —% ;. Then taking the time
erivative of Eq. 35, one has
dSij 1 da dQix do
(37) dt T 2adttU T Tap oM T g SOk
1 da dQ; do _
(38) ~ %E&Lk'ﬁ‘ gtzk —asuezmsm}c Skj

For small elongation one has suez,ns:n§ =~ €5 — 2€;,Qk;. Identification with Eqgs. 36 and 24 then yields the
result. A more general result can be obtained for arbitrary magnitude of Q.
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in Eq. 32, assuming infinitesimal time steps, and pushing the corotational term to the left-
hand-side, one obtains a coarse-grained version of the shear decomposition equation 30.
There are two additional complications however in deriving this coarse-grained equation.
First the averaging operators (-), defined as in Eq. 19 but for triangles instead of cells, are
applied over triangles with different areas in the tissue states I} and I2. Second one would
like to replace the corotational terms ~ (w@) by (w)(Q) in the definition of the corotational
derivative, Eq. 29. These differences can be captured by introducing correcting terms
to the coarse-grained version of Eq. 30. These correcting terms arise from correlations
between deformations of the triangles and the triangle shapes, and are a consequence of
the coarse-graining operation of going from the cellular scale to the tissue scale.

Overall, what we have gained is a rigorous method to calculate different contributions
to tissue deformations.

4. TISSUES AS ACTIVE FLUIDS

Using the ideas introduced above, we now describe tissues as active fluids. “Active”
systems are driven out of equilibrium by chemical reactions; typically through consumption
of a fuel molecule (such as ATP in a cell) which is provided to the system to maintain it
out of equilibrium. The hydrodynamic approach to describe an active system close to
equilibrium uses an assumption of local equilibrium to identify a set of generalized forces
and fluxes within the system. These generalized forces and fluxes are non-equilibrium
properties and vanish at equilibrium. For instance, in a simple compressible active fluid,
one can choose as generalized forces the non-equilibrium stress tensor o;; and the rate
of fuel consumption r, and as conjugate generalized fluxes the shear rate v;; and the
chemical potential of the fuel reaction Au. Once these forces and fluxes are recognized,
non-equilibrium equations are obtained by expanding linearly the forces into fluxes:

(40) Oij = MUgkij + NUij + CApd;;
(41) T = Qugk + AAp

where 77, 1, ¢, A are phenomenological coefficients which are constrained by Onsager sym-
metry relations. 7, 1 corresponding to the fluid bulk and shear viscosity, and (Apu is the
active stress in the system, which is borne out by consumption of the fuel. These coef-
ficients are not known a priori but can be measured experimentally, or could be derived
from an analysis of the microscopic dynamics. The advantage of this formulation lies in
its simplicity, the relatively small number of parameters that it introduces (compared to a
full microscopic description of the system), and its generic aspect, as many systems with
the same symmetries would be described by the same equations.

Even a non-deforming, steady-state tissue has ongoing cellular active processes which
consume energy, such that the idea of expansion around the thermodynamic equilibrium,
as described above, does not apply. However, in the approaches below one retains the idea
of performing an expansion around steady-state, and retaining large-scale variables such
as the stress tensor and shear flow in the physical description.
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4.1. Net cell division and homeostatic pressure. In general one may expect that
the rate of cell division and delamination in a tissue is sensitive to the cell density. The
delamination rate k, for instance, can arise at least in part from “crowding-induced de-
lamination”, an effect whereby cells whose area is becoming too small react, passively or
actively, by extruding from the plane of the epithelium. Such effects can be introduced in
a continuum theory of tissues by postulating a dependency of the net cell division rate,
kq — kq, on the cell number density n:

(42) hg — g = —
nH

As shown schematically below, such a relation implies that cell division occurs at low
cell density, cell death or delamination occurs at high density, and a balance is reached
at a particular equilibrium density ngy. The parameter k is an inverse time scale which
quantifies how strongly the tissue would react to a change in cell density by stimulating cell
division or death. x can be seen as a phenomenological parameter; and Eq. 42 as a linear
expansion of the unknown rate of net cell division into the cell density. This approach
is similar to the method for obtaining constitutive equations in close-to-equilibrium linear
thermodynamics.

kd - ka A

Low density:
cell division

Overcrowding:
cell death

In parallel, one also expects that stresses in the tissue are sensitive to cell density. This
can be captured by stating that the pressure in the tissue P (with P related to the trace

of the stress tensor, P = —%akk) is dependent on the tissue cell density:
n—n
(43) P=Py+x—07H=,
ng

where x is here a bulk elastic modulus. This equation simply captures the fact that cells
are likely to have a preferred area (or preferred volume in 3D), and deviations from this
preferred area generates a pressure. In the relation above Py is the pressure existing at
the homeostatic point n = ng where cell death and cell extrusion balance each other.
Although Eq. 43 corresponds to an elastic behaviour on short time scales, the long-time-
scale effect of a density-dependent net cell division rate is to fluidify the tissue. Intuitively,
this is because putting the tissue under positive excess pressure relative to the homeo-
static pressure, for instance, increases the cell death rate; reducing the area of the tissue.
Subjected to this excess positive pressure, on long time scales the tissue will eventually
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disappear completely. To see this, one can combine the cell number balance equation 25
with Egs. 42 and 43 to obtain:
DP n n

44 —— 4+ k—(P - Py,) = —x—0)v

(44) Dt nH( h) XnH k Uk
with % = 0y P+v;,0, P is the convected time derivative of the pressure. For small variation
of n around the reference density ng, one recognizes the form of an equation describing a
Maxwell fluid (see Eq. 4). By analogy one then sees that x/k plays the role of a viscosity,
and 1/k is the Maxwell viscoelastic timescale on which the system transitions from a solid
to liquid behaviour.

4.2. Tensor of cellular rearrangements and anisotropic stress. We have introduced
a tensor of cellular rearrangements R;; in Eq. 30. We now would like to postulate a
constitutive equation that would tell us how this tensor changes in time. Here we are
guided by symmetry principles: the tensor of cellular rearrangement has the properties of
a nematic, and so can be driven only by other nematic tensors. On this basis one can write

(45) Rij = %Qij +A <Pz’pj - ;5@‘) :
The first term on the right-hand side describes an effect of cell elongation on cellular
rearrangements, occurring on a characteristic timescale 7. The second term describes
the effect of cell planar polarity on cellular rearrangements. In some cases, as in germ
band elongation in Drosophila, it is thought that cell planar polarity pathways leads to
accumulation of force-generating myosin on cellular junctions with a specific orientation,
triggering polarized cellular rearrangements. Such an effect is captured in the continuum
theory by this second term, with A an inverse time scale.

We have discussed in the previous section the tissue pressure, but in addition the full
stress tensor of the tissue 0;; has an anisotropic part o;;, such that

(46) Oij = —P(Sij + O~'ij .

Note that we consider here the stress tensor to be symmetric. Here as well it is natural to
assume that cells have a preferred elongation and that elastic restoring forces arise when
cells elongate. In the absence of planar cell polarity, we expect that the preferred cell shape
is isotropic, and so verifies ();; = 0. Then one can write the constitutive equation for the
anisotropic part of the stress tensor:

(47) 0ij = 2KQi; + ¢ (pipj — ;5@) ,
where K is an elastic shear modulus, and ¢ can be called an active anisotropic stress, in
analogy with the hydrodynamic equations for an active fluid.

We first observe that, as was the case in section 4.1 with density-dependent cell division
and death, here the dependency of topological transitions on cell elongation leads to fluid-
ification of the tissue, with respect to pure shear. Indeed considering the case A = =10
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for simplicity, one obtains combining Eqs. 30, 45 and 47:

(48) Gij + TDE;] =2KT0;; .

One recognizes the constitutive equation of a Maxwell viscoelastic fluid, with viscosity
n = K7 and Maxwell viscoelastic time scale 7. Here applying a stress to the tissue leads
to cell elongation and a corresponding elastic restoring force, on short time scale. However
the increase in cell elongation triggers topological rearrangements which relax the overall
cell elongation. Therefore, to sustain a constant stress, the cells must elongate again, and
the tissue as a whole keeps elongating and flows.

To discuss the effect of the contributions proportional to cell planar polarity, we now
consider the deformation of a rectangular, uniform tissue, with polarity oriented along the
vertical axis p = (0,1). We have in mind a situation where junctional tension increases on
vertical junctions in the tissue (red junctions in the schematic below), and so we expect
¢ > 0 (as there is a high o, active stress compared to 0,;) and A < 0 (as removing vertical
junctions should push cells away from each other along the horizontal direction, giving rise
to a negative shear v,, and positive shear v,;). For ¢ < 0 we assume that there is no cell
elongation, Q = 0, and A = ( = 0. For ¢ > 0 these last two parameters take non-zero
values.

Free tissue
A
@ |- =
A

Confined tissue (no flow)

P T 8 > &
If the tissue is free to deform, there is no overall stress and 7;; = 0, so that following the
constitutive equation 47, the cell elongation instantaneously jumps to a non-zero value:

(49) ny = _Q:m: = _%762901/ =0.

In practice, dissipative effects that have not been introduced here would determine the
time scale on which the cell elongation relaxes to this steady-state value. We also see that
with the signs discussed above, one has (z, > 0 and @y, < 0, and cells elongate along the
horizontal direction. The anisotropic shear decomposition equation then implies that

ST SO S
(50) vyy——vm—2<x\ 27K>’

where we have used that 0;Q;; = 0 for ¢t > 0. Because A < 0 and ¢ > 0, there is a constant
negative shear v,,, so that the rectangular tissue is continuously deforming by expanding
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along the x direction and constricting along the y direction, a mode of deformation that
developmental biologists refer to as “convergence-extension”. We find that both active
cellular rearrangements and the active stress contribute to the overall tissue flow. Only the
active stress however sets the value of cell elongation.

It is interesting to contrast this to the situation where the homogeneous rectangular
tissue is confined and can not deform. In that case v;; = 0 as there can not be a large-scale
flow. The cell elongation dynamics is given by

dg;/y + ley D)
T 2

which leads to Qyy = —Quz = —)‘2—7(1 — 675). Here the cell elongation progressively builds
up, through topological transitions, such that cells are eventually elongated along the y
direction (Qy, > 0 as A < 0). Therefore, here one expects that cells have their longer
junctions along the y direction, and per our initial assumptions, these vertical junctions
also have higher line tension than their horizontal counterparts. The fact that longer
junctions in the tissue have a higher line tension seems counterintuitive. Interestingly such
a configuration is sometimes observed in biological tissues. The framework described here
allows to rationalize this somewhat surprising behaviour.

A

(51)

5. APPLICATIONS

In this section we will discuss simple examples, to see how to relate the concepts devel-
oped above to real biological systems.

Dividing cells
N

FIGURE 1. A growing circular tissue, with cells dividing with cell division
rate kg. The tissue flows with a radial velocity v,..

5.1. Growth of a circular tissue. Here we consider a growing two-dimensional, circular,
rotationally symmetric tissue with radius R. Cells flow in the tissue with a radial velocity
field v, and divide with a constant rate kz. The cell number density in the tissue is denoted
n. We use polar coordinates r, 0. The components of the symmetric gradient of flow are

o Urr  Urg _ Orvr 0
N T )
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The stress tensor is assumed to be isotropic, such that the components of the stress tensor
read

o Orr  Org _ -P 0
(53) U”_<097~ 0'66>_<0 —P>’

with P the pressure in the tissue, given by

n—mn
(54) P=yx £

ng
with nyg a constant and x a tissue elastic modulus. The tissue is free to expand, and
therefore has zero pressure at its boundary. The expression of radial force balance in polar

coordinates is

1 1
(55) 8TUTT + ;86‘0'97' + ;(0'7"7" - 000) =0.
Here 0, = =P, 0,9 =0, 099 = —P and so
(56) orP=0.

The pressure P is simply uniform, equal to 0 at the tissue boundary, so P = 0 and n = ny.
In other words, the tissue is free to assume its preferred cell density.

Using the fact that in polar coordinates, the divergence of a radial vector field f = f.e,
is given by 0, f; = O, f, + %, the balance of cell number reads here

(57) An + 0y (nv,) + ”: = nkqy .

However we have seen that n = ng, so the equation for the balance of cell number then
reduces to 9,v, + 7= = kg. When the cell division rate kq is uniform, the velocity profile
reads, noting that the velocity v, must vanish for r = 0:

k
(58) vy = Edr .

The solution for the flow profile of a circular tissue growing without external constraint
and without external forces is then a simple linear function of the radius.
dR __

In addition using that % = v,(R), one obtains % = g—dR and so

(59) R = Ryekal/?

i.e., the tissue undergoes exponential growth with characteristic timescale 2/kg.

5.2. Application: expansion velocity of a confined proliferating tissue. Here we
discuss again a growing tissue, but in a different set-up. We consider a two-dimensional
tissue which is proliferating with a free interface, along the direction x. The tissue extension
goes to infinity for © — —oo. We denote n the cell number density in the tissue. The tissue
flows along the z axis with velocity v,.

The cell number density balance equation reads here

(60) on + Oy (nvy) = (kg — ko)
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with k4 — k, the net cell division rate. As discussed in section 4.1, we assume here that
proliferation is dependent on the cell density, such that the net cell division rate is
1n—ng

61 kg—ke=——
( ) d T ng

with 7 a characteristic timescale for cell division. The constitutive equation for the stress
in the tissue reads

n—n
(62) Oz = —PH — X A

nyH
where Py is the proliferative pressure in the tissue, and x is a bulk elastic modulus. The
proliferative pressure is assumed to be uniform. Here we also assume that a friction force
acts against the movement of the tissue, with friction coefficient £. The force balance
equation in the tissue then reads

(63) O0xOpz = EVy .

For our calculations we restrict ourselves to small deviations away from the reference
density njgr, such that n = ng + dn, with én < ngy. We obtain an equation for the cell
density, to linear order in én and in the velocity v, starting from the cell number balance
equation and expanding in small dn, v,:

On + Oz (nvy) = _ln—an
T ng
16n
Or(ng +n) + 0x((ng + dn)vg) = ———(ng + on)
TNy
(64) 00N + npgOyv, = —lén
T

where two non-linear terms have been removed in the last line. We now rewrite this last
equation in the referential of the moving boundary, moving with constant velocity V. We
introduce the variable relative to the moving interface, z = x — Vpt. At steady-state, in the
co-moving referential, d;0n — —Vp0d,0n and 0, — 9,. One then obtains the steady-state
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equation:
1
(65) —V00.0n +ng(0,v,) = ——dn .
T

To make further progress we need to calculate the velocity v,. The velocity field can be
obtained by solving the force balance equation 63:

(66) — X 9,0n = éu,
ng
and replacement in the cell number density equation then gives
1
(67) ~Vodudn — X(8%0n) = —~on .
13 T
One now considers the case of a small expansion velocity Vj, such that the first term in

the equation above can be neglected and the cell number density obeys the equation

X
£
We will now use the fact that the stress at the boundary of the tissue z = 0 vanishes, and

that the cell number density does not diverge for z — —oo, to solve for the cell number
density and flow profile in the tissue. The solution is

1
(68) d2on + =6n=0.
T

£
(69) on = C’ez\/;

with C a constant to determine. The stress is

C £
(70) Opz = =Py — x—e VX7 .
ng
Since the tissue is free to expand at its boundary, o,,(z = 0) =0, and C' = —PH”TH. The

velocity is

3 Enp €\ x7
£

1 z ——
= P V xT .
(71) H ?XTB

The velocity of expansion of the tissue, Vg reads

1
VEXT

The speed of expansion of the tissue is slowed down by the friction coefficient acting
against tissue motion, &, and by the tissue bulk elastic modulus y. In this model all the
tissue growth occurs in a boundary layer near the interface, with a size y/x7/¢. This
boundary layer arises because of the non-zero friction coefficient £&. Further away from the
interface, the pressure relaxes to the homeostatic pressure and there is no net cell division.

(72) Vo =v,(2=0)= Py
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5.3. Application: laser ablation experiment.

Top view Cross section

We consider here the process of the opening of a hole by laser ablation of an epithelial
tissue. This experimental technique is used to quantify stresses in the tissue, by using
the opening velocity of the hole as an indirect measurement of the state of stress of the
epithelium. Because this technique does not directly measure a force, it can not be used to
measure actual stresses or tensions, but can be used to measure relative stresses or tensions
at different places of the tissue, under the hypothesis that the viscosity or friction do not
change significantly.

To treat this situation, we consider a circular hole made in an effectively infinite epithe-
lium, which is assumed here to move without friction. The stress in the epithelium drives
the expansion of the fluid around the hole. The radius of the hole changes over time and is
given by the function R(t). There is a symmetry of rotation such that in polar coordinates
(r,0), all quantities depend on 7 only. The total stress is taken to be equal to the sum of
an elastic isotropic stress and a deviatoric viscous stress proportional to v;;:

n—mno

(73) Oij = (00 - X ) dij + 210i;

where gg and ng are the stress and cell density before laser ablation, x the bulk tissue elastic
modulus, and 7 the tissue shear viscosity. The cell density changes over time according to
the cell number balance equation 25, with no division and delamination.

The force balance for the components of the stress in polar coordinates, o, and ogg
(09 = 0 with rotational symmetry), reads

1
(74) Or Oy + ;(O’rr —ogg) =0 .

Using the constitutive relation and force balance equation, we look for an equation for
the velocity field. From the constitutive equations we have:

~ ~ 'UT
(75) (Urr - 090) = 27](1)7’7‘ - 1)09) = 277 (a’rvr - 7) ;
n - n vT
(76) Op0rr = —XOr— + 20(0pUpr) = —XOpr— + 1Oy (3rvr _ _) .
o 10 T

Plugging into force balance gives

ar r r
(77) —X&E +n (83% p &0 v_) = 0.
no r
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We now make the ansatz that the cell density does not change during the expansion of
the hole, n = ng . Solving the differential equation above, we then find:

(78) vp(r) = Cir + %

We then impose the boundary conditions at infinity (v,(r) — 0 when r — oo) and at the
edge of the hole (o,-(R) = 0)). The first boundary condition imposes C1 = 0. This also
implies that 0,v, + %= = 0, and so the cell number balance equation 25 reads:

(%3
(79) on +v,.0pn+n (&,UT + 7) =

and since v, + ¢ = 0, n = ng is indeed a solution of the equation above, so that the
ansatz was justified.
The stress at the edge of the hole reads

(80) o (R) =00 +1 <8T’Ur(R) - Url(f)>

Plugging in the solution and setting o,.(R) = 0, we have Cy = g—gRQ, such that the velocity
field is given by:

oo R?
81 —
(s1) wir) = 52
The dynamic equation for the hole radius is then

dR 0o

(52 o =u(R) = 2R,

with an exponentially increasing solution

(83) R(t) = R(0)e".
The initial velocity, which is often used to compare different states of stress in the tissue,
is vg = 0021:0 with Ry the initial radius of the hole. This velocity is indeed proportional to

aggo.

The equation above also predicts an exponential, accelerating expansion of the hole,
with a time constant of expansion 7 = 3—2 which is set by the initial stress in the tissue and
the viscosity. This result is a consequence of our initial assumption that the tissue is fluid
with respect to pure shear deformation, and is clearly unrealistic for the response of an
epithelium over minutes when topological transitions do not have time to occur. In practice
the model above could be considered as a short time-scale limit of a Kelvin-Voigt description
of the tissue, with 7 the short time scale tissue viscosity. A more realistic description would
also take into account the tissue elastic response to changes in cell elongation.
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5.4. Application: spontaneous flow in a confined epithelium. Here we discuss a
spontaneous flow instability which has been observed in tissues cultured in wvitro in a
confined environment.

Y
A
N S B, A N
L

N |

Ve

L

We consider a two-dimensional epithelium confined between two plates separated by
a distance L along the z direction. We assume invariance by translation along the y
direction. The epithelium has a cell elongation field n = (cos,sinf) and velocity vector
v. The tissue is assumed to have a planar anchoring condition on the two confining
plates, such that 6 (—L) =0 (é) = 5, and it is free to slide along the plates, such that
Ozy (*%) = Oxy (L) =0.

We assume that the stress tensor and dynamics of polarity field for the active fluid are
given by

- 1
0y = —Pdij + 2n0;; + ¢ [nmj - 25@}

v 1 1
(84) §(nzh + n]h — nkhkéw) 2(nihj — njhi)
Dn; 1
(85) DT;Z - h - Vﬁw’n] y
where h; = gF is the molecular field, with F' the effective free energy, and we have used
the corotational derivative
D .
(86) DT;Z = Oin; + Ujajni + wiing

with w;; = %(&-vj — 0jv;) the vorticity tensor. The tissue is assumed here to be incom-
pressible, such that

(87) aﬂ)z‘ =0.
The pressure P in Eq. 84 is a Lagrange multiplier enforcing incompressibility. The term

proportional to ¢ is an active anisotropic stress in the tissue. The terms proportional to
h are stresses that arise from distorsion in the elongation field. The coefficient v appears
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both in the equation for the stress Eq. 84 and the equation for the polarity Eq. 85 as the
model is inspired from close-to-equilibrium thermodynamics, for which Onsager symmetry
relations imply the equality of these coefficients. Here we keep these coefficients equal for

simplicity.
We assume that the free energy associated to the order parameter reads
K A
(88) F= / ds [(@-n)Q +Z(n*-1)
g 2 2

with A a Lagrange multiplier enforcing that the norm of the order parameter stays equal
to 1. The molecular field reads:

(89) h; = KAn; — \n;

which can be rewritten

(90) hy = — [K(0:0)% + \] cos 0 — K (926) sin 0

(91) hy = — [K(9:0)® + A] sin @ + K (920) cos 6

and as a result, denoting hH = nghy +nyhy and h = nyh, — ngh, the components of h
parallel and perpendicular to n,

(92) h = — [K(0:0)* + Al

(93) hy, = —K(0%0) .

At equilibrium, in the absence of flow, h = 0. Taking into account the boundary conditions,
the corresponding equation is solved by the uniform cell elongation axis 6 = 3.

We now are going to determine whether this solution is stable. If the solution is unstable,
a distorsion in the cell elongation pattern and a spontaneous flow can emerge in the system.
To test this, we consider a perturbation around the equilibrium solution § = 7 + 6, with
00 < 1. The incompressibility condition implies d,v, = 0, and v, vanishes at the walls,
hence v, = 0.

The polarity dynamics equation gives

1 1 v
(94) Ong + 5(355%)% =—hy — 5(8xvy)ny
Y
1 1 v
(95) Ony — 5(696%)71m = ;hy - 5(81%)7%:
where we have used w,, = %&jvy and wy; = —%&jvy. These relations can be rewritten

using the identity 0,0 = ng(0ny) — ny(0in,) and Eq. 93:

Oz vy

5 (—1 4 v cos26)

(96) 9,0 — Ijaﬁg _

In the limit 66 < 1, this becomes:
1+v

K
(97) D106 ~ 70556 + Oz vy
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We now need to determine the solution for the flow profile v,. For this writing the force
balance equations, taking into account the invariance with respect to ¥, one obtains:

OpOpz =0
(98) O0p0zy =0 .

The force balance relation implies that 0,0, = 0, and 0., vanishes at the walls, hence
oy = 0. Using the constitutive equation for the stress 84, this condition gives:

1
(99) N0z vy + v cos O sin Ok + g(sin2 0 — cos® O)h, + ihl + Ccosfsinf =0

where one has used

nghy + nyhy = cosO(h)sin — h cos @) + sin O(hy cos € + h sin )

(100) = 2h; cos fsin 6 + (sin® @ — cos? 0)h
Besides, because |n| =1,
1

(101) 0 = ngz(Ong) + ny(Opny) = ;hll — v(0gvy)ngny -
and therefore:
(102) hy = vy (Ozvy)nany .

Using then the expression for i and h,, Eq. 99 can be rewritten:

K
(103) (n + v*y cos? 0 sin? 0)9,v,, — E@%G(l —vcos20) + (cosfsinf =0 .
which becomes in the limit 60 < 1,
K ¢
104 Opvy = — (1 +v)92560 4+ 240 .

(104) = g (13200 +

Combining Eqgs. 97 and 104, we can now obtain a differential equation for the orientation

angular field 46:

1 1 2 1
(105) 0,00 ~ K ( + HV)) 8250 + M(m
Y 4n 2n
To find solutions for this equation, we use the ansatz 66 = €(t) cos(%*), which then gives:
(1 +v) 1 (1+wv)?\ n?
1 ~ 2 g (e T )
o) e { 2n T )€

The equation above exhibits an instability (exponentially growing solution) when

C(1+v) 1 (1+v)%\ =2
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or for the critical length

K 2n 1+v
(108) L>7T\/Z\/’Y(1+l/)+ 7

An instability giving rise to a distorsion pattern and a spontaneous flow occurs for a
contractile system, ¢ > 0, and for large enough confinement length. Indeed if the length
of the tissue stripe is too small, distorsion patterns are too energetically costly and the
instability can not arise.

Below is a sketch of the flow and cell elongation profile that grow beyond the instability
threshold. Similar orientation and flow profiles are indeed observed experimentally by
confining for instance RPE1 cells in wvitro.
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6. CONCLUDING WORDS

The physics of tissues at large scales has an extremely rich behaviour, as illustrated
by some examples we have covered here. Additional examples can be found in the (non-
exhaustive) list of references below. Large-scale tissue collective flows and deformations
is also an active current area of research. In addition, during development, tissues form
patterns of gene expression and signalling activity, an aspect that we have not discussed
here.
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