staff

Ilham Anne Bahechar (Hogga)

Research assistant in Insect olfaction unit

  • T: +41 22 379 67 98
  • office 4067a (Sciences III)
  • Multilocus phylogeny and historical biogeography of Hypostomus shed light on the processes of fish diversification in La Plata Basin. Sci Rep 2021 Mar;11(1):5073. 10.1038/s41598-021-83464-x. 10.1038/s41598-021-83464-x.

    abstract

    Distribution history of the widespread Neotropical genus Hypostomus was studied to shed light on the processes that shaped species diversity. We inferred a calibrated phylogeny, ancestral habitat preference, ancestral areas distribution, and the history of dispersal and vicariance events of this genus. The phylogenetic and distribution analyses indicate that Hypostomus species inhabiting La Plata Basin do not form a monophyletic clade, suggesting that several unrelated ancestral species colonized this basin in the Miocene. Dispersal to other rivers of La Plata Basin started about 8 Mya, followed by habitat shifts and an increased rate of cladogenesis. Amazonian Hypostomus species colonized La Plata Basin several times in the Middle Miocene, probably via the Upper Paraná and the Paraguay rivers that acted as dispersal corridors. During the Miocene, La Plata Basin experienced marine incursions, and geomorphological and climatic changes that reconfigured its drainage pattern, driving dispersal and diversification of Hypostomus. The Miocene marine incursion was a strong barrier and its retraction triggered Hypostomus dispersal, increased speciation rate and ecological diversification. The timing of hydrogeological changes in La Plata Basin coincides well with Hypostomus cladogenetic events, indicating that the history of this basin has acted on the diversification of its biota.

    view more details on Pubmed

  • Evolutionary units delimitation and continental multilocus phylogeny of the hyperdiverse catfish genus Hypostomus. Molecular phylogenetics and evolution vol. 145 (2020): 106711. doi:10.1016/j.ympev.2019.106711

    abstract

    With 149 currently recognized species, Hypostomus is one of the most species-rich catfish genera in the world, widely distributed over most of the Neotropical region. To clarify the evolutionary history of this genus, we reconstructed a comprehensive phylogeny of Hypostomus based on four nuclear and two mitochondrial markers. A total of 206 specimens collected from the main Neotropical rivers were included in the present study. Combining morphology and a Bayesian multispecies coalescent (MSC) approach, we recovered 85 previously recognized species plus 23 putative new species, organized into 118 'clusters'. We presented the Cluster Credibility (CC) index that provides numerical support for every hypothesis of cluster delimitation, facilitating delimitation decisions. We then examined the correspondence between the morphologically identified species and their inter-specific COI barcode pairwise divergence. The mean COI barcode divergence between morphological sisters species was 1.3±1.2%, and only in 11% of the comparisons the divergence was ≥ 2%. This indicates that the COI barcode threshold of 2% classically used to delimit fish species would seriously underestimate the number of species in Hypostomus, advocating for a taxon-specific COI-based inter-specific divergence threshold to be used only when approximations of species richness are needed. The phylogeny of the 108 Hypostomus species, together with 35 additional outgroup species, confirms the monophyly of the genus. Four well-supported main lineages were retrieved, hereinafter called super-groups: Hypostomus cochliodon, H. hemiurus, H. auroguttatus, and H. plecostomus super-groups. We present a compilation of diagnostic characters for each super-group. Our phylogeny lays the foundation for future studies on biogeography and on macroevolution to better understand the successful radiation of this Neotropical fish genus.

    view more details on Pubmed

  • The contribution of neutral evolution and adaptive processes in driving phenotypic divergence in a model mammalian species, the Andean fox Lycalopex culpaeus Journal of Biogeography 2018; 45: 1114–1125. https://doi.org/10.1111/jbi.13189

    abstract

    Understanding the mechanisms that drive phenotypic divergence along climatic gradients is a long-standing goal of biogeography. To fulfil this objective, we tested if neutral and/or adaptive effects drive phenotypic diversification. We quantified the effects of neutral evolution and natural selection on morphological variability of a well-suited mammalian species, the fox, Lycalopex culpaeus.

    see on external website

  • Efficient mutation identification in zebrafish by microarray capturing and next generation sequencing Biochemical and biophysical research communications, 405(3), 373–376. https://doi.org/10.1016/j.bbrc.2011.01.024

    abstract

    Fish models like medaka, stickleback or zebrafish provide a valuable resource to study vertebrate genes. However, finding genetic variants e.g. mutations in the genome is still arduous. Here we used a combination of microarray capturing and next generation sequencing to identify the affected gene in the mozartkugelp11cv (mzlp11cv) mutant zebrafish. We discovered a 31-bp deletion in macf1 demonstrating the potential of this technique to efficiently isolate mutations in a vertebrate genome.

    view more details on Pubmed

  • Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster Molecular and cellular biology, 31(4), 616–625. https://doi.org/10.1128/MCB.00849-10

    abstract

    The genomic binding sites of Polycomb group (PcG) complexes have been found to cluster, forming Polycomb "bodies" or foci in mammalian or fly nuclei. These associations are thought to be driven by interactions between PcG complexes and result in enhanced repression. Here, we show that a Polycomb response element (PRE) with strong PcG binding and repressive activity cannot mediate trans interactions. In the case of the two best-studied interacting PcG targets in Drosophila, the Mcp and the Fab-7 regulatory elements, we find that these associations are not dependent on or caused by the Polycomb response elements they contain. Using functional assays and physical colocalization by in vivo fluorescence imaging or chromosome conformation capture (3C) methods, we show that the interactions between remote copies of Mcp or Fab-7 elements are dependent on the insulator activities present in these elements and not on their PREs. We conclude that insulator binding proteins rather than PcG complexes are likely to be the major determinants of the long-range higher-order organization of PcG targets in the nucleus.

    view more details on Pubmed

  • Transcriptome screen for fast evolving genes by Inter-Specific Selective Hybridization (ISSH) BMC genomics, 11, 126. https://doi.org/10.1186/1471-2164-11-126

    abstract

    Background: Fast evolving genes are targets of an increasing panel of biological studies, from cancer research to population genetics and species specific adaptations. Yet, their identification and isolation are still laborious, particularly for non-model organisms. We developed a method, named the Inter-Specific Selective Hybridization (ISSH) method, for generating cDNA libraries enriched in fast evolving genes. It utilizes transcripts of homologous tissues of distinct yet related species. Experimental hybridization conditions are monitored in order to discard transcripts that do not find their homologous counterparts in the two species sets as well as transcripts that display a strong complementarity between the two species. Only heteroduplexes that disanneal at low stringency are used for constructing the resulting cDNA library. Results: We demonstrate the efficiency of the ISSH method by generating a brain cDNA library enriched in fast evolving transcripts of a non-model catfish species as well as a control, non-enriched library. Our results indicate that the enriched library contains effectively more fast evolving sequences than the control library. Gene annotation analyses also indicate enrichment in genes with low expression levels and non-ubiquitously expressed genes, both categories encompassing the majority of fast evolving genes. Furthermore, most of the identified transcripts show higher sequence divergence between two closely related catfish species as compared to recognized fast evolving DNA markers. Conclusions: The ISSH method offers a simple, inexpensive and efficient way to screen the transcriptome for isolating fast evolving genes. This method opens new opportunities in the investigation of biological mechanisms that include fast evolving genes, such as the evolution of lineage specific processes and traits responsible for species adaptation to their environment.

    view more details on Pubmed

  • Dissecting the regulatory landscape of the Abd-B gene of the bithorax complex. Development 2006 Aug;133(15):2983-93. dev.02451. 10.1242/dev.02451.

    abstract

    The three homeotic genes of the bithorax complex (BX-C), Ubx, abd-A and Abd-B control the identity of the posterior thorax and all abdominal segments. Large segment-specific cis-regulatory regions control the expression of Ubx, abd-A or Abd-B in each of the segments. These segment-specific cis-regulatory regions span the whole 300 kb of the BX-C and are arranged on the chromosome in the same order as the segments they specify. Experiments with lacZ reporter constructs revealed the existence of several types of regulatory elements in each of the cis-regulatory regions. These include initiation elements, maintenance elements, cell type- or tissue-specific enhancers, chromatin insulators and the promoter targeting sequence. In this paper, we extend the analysis of regulatory elements within the BX-C by describing a series of internal deficiencies that affect the Abd-B regulatory region. Many of the elements uncovered by these deficiencies are further verified in transgenic reporter assays. Our results highlight four key features of the iab-5, iab-6 and iab-7 cis-regulatory region of Abd-B. First, the whole Abd-B region is modular by nature and can be divided into discrete functional domains. Second, each domain seems to control specifically the level of Abd-B expression in only one parasegment. Third, each domain is itself modular and made up of a similar set of definable regulatory elements. And finally, the activity of each domain is absolutely dependent on the presence of an initiator element.

    view more details on Pubmed

  • Transcription through the iab-7 cis-regulatory domain of the bithorax complex interferes with maintenance of Polycomb-mediated silencing. Development 2002 Nov;129(21):4915-22.

    abstract

    The Fab-7 chromatin domain boundary insures functional autonomy of the iab-6 and iab-7 cis-regulatory domains in the bithorax complex (BX-C). We have previously shown that chromatin insulators such as gypsy or scs(min) are potent insulators that cannot substitute for Fab-7 function within the BX-C. During the early stages of these swapping experiments, we initially used a fragment of scs that was slightly larger than a minimal scs element (scs(min)). We report that this scs fragment, unlike scs(min), interferes in an orientation-dependent manner with the output of a regulatory region covering 80 kb of DNA (from iab-4 to iab-8). At the core of this orientation-dependent phenotype is a promoter located immediately adjacent to the scs insulator. In one orientation, the promoter traps the activity of the iab-3 through iab-5 cis-regulatory domains, diverting them from the abd-A gene. In the opposite orientation, the promoter is transcribing the iab-7 cis-regulatory domain, resulting in ectopic activation of the latter. Our data suggest that transcription through a Polycomb-Response Element (PRE) interferes with the maintenance of a Polycomb repression complex.

    view more details on Pubmed

  • Replacement of Fab-7 by the gypsy or scs insulator disrupts long-distance regulatory interactions in the Abd-B gene of the bithorax complex Molecular cell, 8(5), 1145–1151. https://doi.org/10.1016/s1097-2765(01)00377-x

    abstract

    Chromatin domain boundaries, like scs or gypsy insulators in Drosophila, have been identified in transgene assays through their enhancer-blocking activity. Boundary elements in the bithorax complex (BX-C), such as Fab-7 and Fab-8, have been identified genetically and been shown to have insulator activity in transgene assays. However, it is not clear whether boundary elements identified in transgene assays will function appropriately in chromosomal contexts such as BX-C. Using gene conversion, we have substituted the scs or gypsy insulators for Fab-7. We find that both scs and gypsy are very potent insulators in the ectoderm, but surprisingly, the insulating activity of gypsy (but not scs) is lost in the CNS. Our results reveal that the Fab-7 boundary must have special properties that scs and gypsy lack, which allow it to function appropriately in BX-C regulation.

    view more details on Pubmed

  • Chromatin domain boundaries in the Bithorax complex Cellular and molecular life sciences : CMLS, 54(1), 60–70. https://doi.org/10.1007/s000180050125

    abstract

    Eukaryotic chromosomes are thought to be organized into a series of discrete higher-order chromatin domains. This organization is believed to be important not only in the compaction of the chromatin fibre, but also in the utilization of genetic information. Critical to this model are the domain boundaries that delimit and segregate the chromosomes into units of independent gene activity. In Drosophila, such domain boundaries have been identified through two different approaches. On the one hand, elements like scs/scs' and the reiterated binding site for the SU(HW) protein have been characterized through their activity of impeding enhancer-promoter interactions when intercalated between them. Their role of chromatin insulators can protect transgenes from genomic position effects, thereby establishing independent functional domains within the chromosome. On the other hand, domain boundaries of the Bithorax complex (BX-C) like Fab-7 and Mcp have been identified through mutational analysis. Mcp and Fab-7, however, may represent a specific class of boundary elements; instead of separating adjacent domains that contain separate structural genes. Mcp and Fab-7 delimit adjacent cis-regulatory domains, each of which interacts independently with their target promoters. In this article, we review the genetic and molecular characteristics of the domain boundaries of the BX-C. We describe how Fab-7 functions to confine activating as well as repressive signals to the flanking regulatory domains. Although the mechanisms by which Fab-7 works as a domain boundary remain an open issue, we provide preliminary evidence that Fab-7 is not a mere insulator like scs or the reiterated binding site for the SU(HW) protein.

    view more details on Pubmed

  • In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element Development (Cambridge, England), 124(9), 1809–1820. https://doi.org/10.1242/dev.124.9.1809

    abstract

    Parasegmental (PS)-specific expression of the homeotic genes of the bithorax-complex (BX-C) appears to depend upon the subdivision of the complex into a series of functionally independent cis-regulatory domains. Fab-7 is a regulatory element that lies between iab-6 and iab-7 (the PS11- and PS12-specific cis-regulatory domains, respectively). Deletion of Fab-7 causes ectopic expression of iab-7 in PS11 (where normally only iab-6 is active). Two models have been proposed to account for the dominant Fab-7 phenotype. The first considers that Fab-7 functions as a boundary element that insulates iab-6 and iab-7. The second model envisages that Fab-7 contains a silencer element that keeps iab-7 repressed in parasegments anterior to PS12. Using a P-element inserted in the middle of the Fab-7 region (the bit transposon), we have generated an extensive collection of new Fab-7 mutations that allow us to subdivide Fab-7 into a boundary element and a Polycomb-respond element (PRE). The boundary lies within 1 kb of DNA on the proximal side of the bit transposon (towards iab-6). Deletions removing this element alone cause a complex gain- and loss-of-function phenotype in PS11; in some groups of cells, both iab-6 and iab-7 are active, while in others both iab-6 and iab-7 are inactive. Thus, deletion of the boundary allows activating as well as repressing activities to travel between iab-6 and iab-7. We also provide evidences that the boundary region contains an enhancer blocker element. The Polycomb-response element lies within 0.5 kb of DNA immediately distal to the boundary (towards iab-7). Deletions removing the PRE alone do not typically cause any visible phenotype as homozygotes. Interestingly, weak ectopic activation of iab-7 is observed in hemizygous PRE deletions, suggesting that the mechanisms that keep iab-7 repressed in the absence of this element may depend upon chromosome pairing. These results help to reconcile the previously contradictory models on Fab-7 function and to shed light on how a chromatin domain boundary and a nearby PRE concur in the setting up of the appropriate PS-specific expression of the Abd-B gene of the BX-C.

    view more details on Pubmed

  • Splits in fruitfly Hox gene complexes Nature, 380(6570), 116. https://doi.org/10.1038/380116a0

    abstract

    -

    view more details on Pubmed

Nothing to show yet