staff

Christophe Ferrante

External collaborator in MuseumLab

  • T: -
  • office -
  • A deep dive into the coelacanth phylogeny PLoS One, 20(6): e0320214. https://doi.org/10.1371/journal.pone.0320214

    abstract

    The discovery in 1938 of a living coelacanth, Latimeria chalumnae, triggered much research and discussion on the evolutionary history and phylogeny of these peculiar sarcopterygian fishes. Indeed, coelacanths were thought to represent the 'missing link' between fishes and tetrapods, a phylogenetic position which is now dismissed. Since the first analyses using a phylogenetic approach were carried out three decades ago, a relatively similar data matrix has been consistently used by researchers for running analyses, with no significant changes aside from the addition of new taxa and characters, and minor corrections to the states' definition and scorings. Here, we investigate the phylogeny of Actinistia with an updated data matrix based on a list of partially new or modified characters. From the initial list of characters available in the most recent studies, we removed 16 characters, modified 16 other characters' definition and added 18 new characters, resulting in a list of 112 characters. We also revised the data matrix by correcting 171 miscoding found for 37 taxa. Based on the new phylogeny, we propose a new classification of coelacanths including 46 coelacanth genera, part of them allocated within nine families and four sub-families. Most of these groups were already named but were not recognised as clades, or poorly or not diagnosed in previous phylogenetic analyses. We provide several new or emended diagnoses for each clade. For the first time, a set of Palaeozoic coelacanth genera are found gathered within a clade, namely the Diplocercidae. All Mesozoic coelacanths, including extant Latimeria, are resolved as members of the order Coelacanthiformes, a clade that arose in the Permian, with Coelacanthus diverging first. We also found that most Mesozoic coelacanths are gathered into a clade, the Latimerioidei, itself divided into the Latimeriidae and the Mawsoniidae, each of which is divided into two subfamilies. Although these important changes, the new phylogeny of the Actinistia shows no significant alteration, and it remains relatively similar compared to previous studies. This demonstrates that the coelacanth phylogeny is now rather stable despite the weak support for most nodes in the phylogeny, and despite the difficulty of defining relevant morphological characters to score in this relatively slowly evolving lineage.

    view more details on Pubmed

  • Revision of the Middle Triassic coelacanth Ticinepomis Rieppel 1980 (Actinistia, Latimeriidae) with paleobiological and paleoecological considerations Swiss journal of palaeontology, 142(1), 18. https://doi.org/10.1186/s13358-023-00276-4 Format:

    abstract

    Coelacanths form today an impoverished clade of sarcopterygian fishes, which were somewhat more diverse during their evolutionary history, especially in the Triassic. Since the first description of the coelacanth Ticinepomis peyeri from the Besano Formation of the UNESCO World Heritage Site of Monte San Giorgio (Canton Ticino, Switzerland), the diversity of coelacanths in the Middle Triassic of this area of the western Paleo-Tethys has been enriched with discoveries of other fossil materials. At Monte San Giorgio, two specimens of Heptanema paradoxum and several specimens of the unusual coelacanth Rieppelia heinzfurreri, have been reported from the Meride Limestone and the Besano Formation, respectively. Another unusual coelacanth, Foreyia maxkuhni, and two specimens referred to Ticinepomis cf. T. peyeri have been described from the isochronous and paleogeographical close Prosanto Formation at the Ducanfurgga and Strel sites (near Davos, Canton Graubünden). In the framework of the revision of the coelacanth material from the Besano Formation kept in the collection of the Paläontologisches Institut und Museum der Universität Zürich (Switzerland), we reviewed the genus Ticinepomis on the basis of the holotype and four new referred specimens. Several morphological traits that were little and/or not understood in T. peyeri are here clarified. We re-evaluate the taxonomic attribution of the material of Ticinepomis cf. T. peyeri from the Prosanto Formation. Morphological characters are different enough from the type species, T. peyeri, to erect a new species, Ticinepomis ducanensis sp. nov., which is shown to be also present in the Besano Formation of Monte San Giorgio, where it is represented by fragmentary bone elements. The recognition of a new coelacanth species indicates that the diversity of this slow-evolving lineage was particularly high in this part of the Western Tethys during the Middle Triassic, especially between 242 and 240 million years ago.

    view more details on Pubmed

  • Early Mesozoic burst of morphological disparity in the slow-evolving coelacanth fish lineage Scientific reports, 13(1), 11356. https://doi.org/10.1038/s41598-023-37849-9 Format:

    abstract

    Since the split of the coelacanth lineage from other osteichthyans 420 million years ago, the morphological disparity of this clade has remained remarkably stable. Only few outliers with peculiar body shape stood out over the evolutionary history, but they were phylogenetically and stratigraphically independent of each other. Here, we report the discovery of a new clade of ancient latimeriid coelacanths representing a small flock of species present in the Western Tethys between 242 and 241 million years ago. Among the four species, two show highly derived anatomy. A new genus shows reversal to plesiomorphic conditions in its skull and caudal fin organisation. The new genus and its sister Foreyia have anatomical modules that moved from the general coelacanth Bauplau either in the same direction or in opposite direction that affect proportions of the body, opercle and fins. Comparisons with extant genetic models shows that changes of the regulatory network of the Hedgehog signal gene family may account for most of the altered anatomy. This unexpected, short and confined new clade represents the only known example of a burst of morphological disparity over the long history of coelacanths at a recovery period after the Permian-Triassic Mass Extinction.

    view more details on Pubmed

  • The first Jurassic coelacanth from Switzerland Swiss journal of palaeontology, 141(1), 15. https://doi.org/10.1186/s13358-022-00257-z

    abstract

    Coelacanths form a clade of sarcopterygian fish represented today by a single genus, Latimeria. The fossil record of the group, which dates back to the Early Devonian, is sparse. In Switzerland, only Triassic sites in the east and southeast of the country have yielded fossils of coelacanths. Here, we describe and study the very first coelacanth of the Jurassic period (Toarcian stage) from Switzerland. The unique specimen, represented by a sub-complete individual, possesses morphological characteristics allowing assignment to the genus Libys (e.g., sensory canals opening through a large groove crossed by pillars), a marine coelacanth previously known only in the Late Jurassic of Germany. Morphological characters are different enough from the type species, Libys polypterus, to erect a new species of Libys named Libys callolepis sp. nov. The presence of Libys callolepis sp. nov. in Lower Jurassic beds extends the stratigraphic range of the genus Libys by about 34 million years, but without increasing considerably its geographic distribution. Belonging to the modern family Latimeriidae, the occurrence of Libys callolepis sp. nov. heralds a long period, up to the present day, of coelacanth genera with very long stratigraphic range and reduced morphological disparity, which have earned them the nickname of 'living fossils'.

    view more details on Pubmed

  • Giant Mesozoic coelacanths (Osteichthyes, Actinistia) reveal high body size disparity decoupled from taxic diversity Scientific reports, 11(1), 11812. https://doi.org/10.1038/s41598-021-90962-5

    abstract

    The positive correlation between speciation rates and morphological evolution expressed by body size is a macroevolutionary trait of vertebrates. Although taxic diversification and morphological evolution are slow in coelacanths, their fossil record indicates that large and small species coexisted, which calls into question the link between morphological and body size disparities. Here, we describe and reassess fossils of giant coelacanths. Two genera reached up to 5 m long, placing them among the ten largest bony fish that ever lived. The disparity in body size adjusted to taxic diversity is much greater in coelacanths than in ray-finned fishes. Previous studies have shown that rates of speciation and rates of morphological evolution are overall low in this group, and our results indicate that these parameters are decoupled from the disparity in body size in coelacanths. Genomic and physiological characteristics of the extant Latimeria may reflect how the extinct relatives grew to such a large size. These characteristics highlight new evolutionary traits specific to these "living fossils"

    view more details on Pubmed

  • Histology and Geochemistry of Allosaurus (Dinosauria: Theropoda) From the Cleveland-Lloyd Dinosaur Quarry (Late Jurassic, Utah): Paleobiological Implications Frontiers in Paleontology. https://doi.org/10.3389/feart.2021.641060

    abstract

    The Late Jurassic Allosaurus is one of the better-studied dinosaurs. A histological and geochemical study of a tibia and a femur of A. fragilis recovered in the Upper Jurassic Cleveland-Lloyd Dinosaur Quarry, Utah, United States has been done in order to address growth characteristics of this species. The two bones, probably belonging to separate individuals, are among the largest known for this species, which make them suitable to address such issues. The inclusion of our data on femur growth markings in the previously published data reflects a range of growth variability rather than two distinct growth strategies. The tibia has a well-developed external fundamental system indicating somatic maturity achievement. Using a quantitative method of superimposition to retrocalculate missing lines of arrested growth, the tibia appears to correspond to an individual that reached its skeletal maturity at 22 years and died at approximately 26 years. In the tibia, the concentration of zinc, a potential biomarker associated with bone formation, displays a higher concentration in zones of rapid growth compared to annuli. There is no direct relationship between the values of δ18Op and the lines of arrested growth distribution. The absence of relations between the histological organization and an enrichment in REE of the bone, indicates that the variations of δ18Op likely represent a diagenetic process rather than a primordial, biologic composition. However, the geochemical composition of the bones is not homogeneous along the sections, indicating that the signal variations have not been completely erased by diagenesis.

    see on external website

  • Coelacanths from the Middle Triassic of Switzerland and the pace of actinistian evolution Research & Knowledge, 3(2), 59-62. 10.14456/randk.2017.28

    abstract

    Latimeria chalumnae (Actinistia) was regarded as the 'ancestor of the four-legged vertebrates' and rapidly became the iconic example of a 'living fossil'. Although its evolutionary position close to the origin of tetrapods is now dismissed, the question of its evolutionary pace is still a matter of debate. The UNESCOs' World Heritage Monte San Giorgio Triassic site, spanning the border between Italy and Switzerland in the Southern Alps, has yielded one of the major marine vertebrate assemblages of the Middle Triassic worldwide. This general overview of the Middle Triassic coelacanths from Switzerland heralds a project that will be conducted in the following years. The project consists firstly to prepare, describe and compare the coelacanth material from the Besano Formation housed in the collection of the University of Zurich.

    see on external website

Nothing to show yet