staff

Leonardo Marconi

PhD Student in Neurogenetics

  • T: +41 22 379 32 81
  • office 4034 (Sciences III)
  • A toolbox for genetic targeting of the claustrum bioRxiv 2024.05.13.593837; doi: https://doi.org/10.1101/2024.05.13.593837

    abstract

    The claustrum (CLA), a subcortical nucleus in mammals, essentially composed of excitatory projection neurons and known for its extensive connections with the neocortex, has recently been associated with a variety of functions ranging from consciousness to impulse control. However, research on the CLA has been challenging due to difficulties in specifically and comprehensively targeting its neuronal populations. In various cases, this limitation has led to inconsistent findings and a lack of reliable data. In the present work, we describe the expression profile of the Smim32 gene, which is almost exclusively transcribed in excitatory neurons of the CLA and the endopiriform nucleus, as well as in inhibitory neurons of the thalamic reticular nucleus. Leveraging this unique expression pattern, we developed a series of Cre- and Flippase-expressing knockin and BAC transgenic mouse lines with different expression profiles. With these novel tools in hand, we propose new standards for the interrogation of CLA function.

    see on external website

  • Publisher Correction: Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity. Nat Commun 2023 Mar;14(1):1156. PMC9977893. 10.1038/s41467-023-36849-7. 10.1038/s41467-023-36849-7.

    abstract

    view more details on Pubmed

  • Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity. Nat Commun 2022 May;13(1):2929. 10.1038/s41467-022-30511-4. 10.1038/s41467-022-30511-4.

    abstract

    In mammals, chemoperception relies on a diverse set of neuronal sensors able to detect chemicals present in the environment, and to adapt to various levels of stimulation. The contribution of endogenous and external factors to these neuronal identities remains to be determined. Taking advantage of the parallel coding lines present in the olfactory system, we explored the potential variations of neuronal identities before and after olfactory experience. We found that at rest, the transcriptomic profiles of mouse olfactory sensory neuron populations are already divergent, specific to the olfactory receptor they express, and are associated with the sequence of these latter. These divergent profiles further evolve in response to the environment, as odorant exposure leads to reprogramming via the modulation of transcription. These findings highlight a broad range of sensory neuron identities that are present at rest and that adapt to the experience of the individual, thus adding to the complexity and flexibility of sensory coding.

    view more details on Pubmed

Nothing to show yet