Impact of cycling cells and cell cycle regulation on Hydra regeneration.

Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked.


Nature News & Views: 2017 in research

An article reporting results from our Department is one of the 7 ‘News & Views’ selected from this year by the editors of the prestigious journal Nature.


to be announced

24.01.2018 11:15, 1S059 (Sciences III)

Antony Dodd (University of Bristol).
hosted by: Theresa Fitzpatrick.


Our department hosts 12 research laboratories gathering close to 200 scientists, engineers and technical staff. Research topics cover a large variety of topics, such as developmental genetics and neurogenetics, regeneration, evo-devo, physics of biology, phylogenetics or anthropology.



Teaching life sciences at the University of Geneva is an important duty for all staff scientists. In addition to the bachelor programme, we also propose specific masters and PhD specialisations through various programmes.



Department of Genetics and Evolution
4, Boulevard d'Yvoy
1205 Geneva

office: 4002A
T: +41 22 379 67 85