Locally-curved geometry generates bending cracks in the African elephant skin.

  • publication
  • 04-10-2018

Martins AF, Bennett NC, Clavel S, Groenewald H, Hensman S, Hoby S, Joris A, Manger PR, Milinkovitch MC. Nat Commun 2018 Oct;9(1):3865. 10.1038/s41467-018-06257-3. 10.1038/s41467-018-06257-3. PMC6168576.

An intricate network of crevices adorns the skin surface of the African bush elephant, Loxodonta africana. These micrometre-wide channels enhance the effectiveness of thermal regulation (by water retention) as well as protection against parasites and intense solar radiation (by mud adherence). While the adaptive value of these structures is well established, their morphological characterisation and generative mechanism are unknown. Using microscopy, computed tomography and a custom physics-based lattice model, we show that African elephant skin channels are fractures of the animal brittle and desquamation-deficient skin outermost layer. We suggest that the progressive thickening of the hyperkeratinised stratum corneum causes its fracture due to local bending mechanical stress in the troughs of a lattice of skin millimetric elevations. The African elephant skin channels are therefore generated by thickening of a brittle material on a locally-curved substrate rather than by a canonical tensile cracking process caused by frustrated shrinkage.

voir sur Pubmed